Q.P. Code: 16HS618					
Reg.	No:				
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR					
(AUTONOMOUS) MCA I Year I Semester (R16) Regular Examinations January 2017					
MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE					
(For Students admitted in 2016 only) Time: 3 hours Max. Marks: 60					
(Answer all Five Units 5 X 12 = 60 Marks)					
		UNIT-I			
Q.1	a. b.		SM SM		
	5.	\mathbf{OR}	IVI		
Q.2	a.	Show that $(P \lor Q) \land (\neg P \land Q) \leftrightarrow (\neg P \land Q)$. 6	M		
	b.		M		
0.2					
Q.3		(i) Let $S = \{1, 2, 3, 4, 5\}$ and let $A = S \times S$. Define the following relation R on			
		A such that $(a, b)R(a',b')$ if and only if $ab' = a'b$. (ii) Show that R is an equivalence relation.			
			2M		
•					
Q.4	a.	Let the relation, $R = \{(1, 2), (2, 3), (3, 4)\}$ on the set $\{1, 2, 3, 4\}$. Obtain transitive closure of R. 6	M		
	b.	If H is a non-empty complex of a group G, then prove that H is a			
		subgroup of G if and only if $a, b \in H \Rightarrow ab^{-1} \in H$, where b^{-1} is the inverse of <i>b</i> in G.	M		
		UNIT-III	111		
Q.5	a.	In how many ways can 10 people be seated in a row, so that a certain			
	b.	pair of them are not next to each other? 6 How many 6 digit decimal numbers contain exactly three different	δM		
		digits? 6	M		
0.6	•	OR			
Q.6	a.	In how many ways can a committee of 5 ladies and 4 gents be chosen from 9 ladies and 15 gents, if gent, A refuses to take part if lady, B is			
	b.		M		
	υ.		M		
UNIT-IV					
Q.7		Solve $a_n - 4a_{n-1} + 4a_{n-2} = (n+1)^2$, given $a_0 = 0, a_1 = 1$.	2M		
OR					
Q.8	a.	Explain the recurrence relation. What is its application in computer science with suitable examples? 6	M		
	b.	\mathbf{O} , \mathbf{I} , \mathbf{O} , \mathbf{I} , \mathbf{O}	M		

UNIT-V

Q.9	Explain the algorithm for the depth first search (DFS) traversal of a graph with suitable example.	12M
	OR	
Q.10	Determine the number of edges in, i.Complete graph K _n ii.Complete bipartite graph K _{m,n} iii.Cyclic graph C _n and iv.Path graph P _n .	12M
	*** END ***	